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Abstract

Tone is an essential component for word formation in all tone languages. It plays a very important role in the trans-

mission of information in speech communication. In this paper, we look at using support vector machines (SVMs) for

automatic tone recognition in continuously spoken Cantonese, which is well known for its complex tone system. An

adaptive log-scale 5-level F0 normalization method is proposed to reduce the tone-irrelevant variation of F0 values. Fur-

thermore, an extended version of the above normalization method that considers intonation is also presented. A tone

recognition accuracy of 71.50% has been obtained in a speaker-independent task. This result compares favorably with

the results reported earlier for the same task. Considerable improvement has been achieved by adopting this tone rec-

ognition scheme in a speaker-independent Cantonese large vocabulary continuous speech recognition (LVCSR) task.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Tone is an essential component of tone lan-

guages, and is used to build words much as conso-

nants and vowels do. For instance, in Cantonese,

the syllable /si/, when pronounced with a high level
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pitch pattern, means ‘‘poetry’’; with a high rising
pattern, the meaning is ‘‘history’’; with a middle

level pattern, the meaning is ‘‘to try’’; with a low

falling pattern, the meaning is ‘‘time’’; with a low

rising pattern, the meaning is ‘‘city’’; with a low

level pattern, the meaning is ‘‘yes’’ (Wang and

Cheng, 1987). So speech recognition of tone lan-

guages depends not only on the articulatory com-

position but also on the tone patterns.
During the last two decades, many approaches

have been proposed for tone recognition. Hidden
ed.
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Fig. 1. Syllable structure of Cantonese. [ ] means that the

enclosed element is optional (Wang, 1973).
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Markov models (HMMs) (Yang, 1988; Chen et al.,

1987; Lee, 1997; Zhang, 2000; Wang, 2001), neural

networks (Lee et al., 1995; Chen and Wang, 1995;

Emonts and Lonsdale, 2003) and Fujisaki�s model

(Wang et al., 1990; Potisuk et al., 1999) have been
applied to recognize tones in tone languages, such

as Mandarin, Cantonese and Thai. For isolated

tone recognition, very high recognition accuracy

has been obtained (Yang, 1988; Emonts and Lons-

dale, 2003). However, for tone recognition in con-

tinuous speech, although relatively high tone

recognition accuracy has been achieved in Chen

and Wang (1995) and Zhang (2000) and Potisuk
et al. (1999) for Mandarin and Thai, respectively,

manual segmentation was done before training

the tone models, which is not suitable for auto-

matic speech recognition (ASR). For automatic

segmentation, a recognition score of 72.92% has

been reported in Qian et al. (2003) for Cantonese

with phonological constraints. However, without

phonological constraints, lower recognition scores
of 70.1% (Cao et al., 2000) and 66.4% (Lee et al.,

2002a) have been reported for Mandarin and Can-

tonese, respectively.

In this paper, an adaptive log-scale 5-level F0

normalization scheme will be presented to reduce

tone-irrelevant variations. The intonation effect

on tones will be further incorporated into the tone

normalization scheme. Based on these schemes,
considerable improvement of Cantonese tone rec-

ognition has been obtained. Furthermore, possible

reasons for the severe confusion between some

tone pairs will be discussed. When incorporating

this tone recognition system into Cantonese

LVCSR via the Parallel Tone Score Association

(PTSA) (Peng and Wang, 2004) method, experi-

mental results show that the relative character
error rate was reduced by 5.1% compared with

the recognition results with the baseline tone rec-

ognition scheme.

In the next section, the phonology and phonet-

ics of Cantonese will be briefly introduced. The

automatic extraction of short-term based tone

features, the baseline F0 normalization scheme,

and the adaptive F0 normalization schemes will
be described in Section 3. The SVM based tone

recognition method will be given in Section 4.

Then the experimental results .will be presented
in Section 5. Finally, conclusions will be drawn

in Section 6.
2. Cantonese phonology and phonetics

Each Cantonese utterance can be viewed as a

concatenation of monosyllables, each of which

corresponds to a Chinese character. In Cantonese,

there are a total of 1,761 tonal syllables; without

considering tonal differences, there are about 625

base syllables (Linguistic Society of Hong Kong,

2002).

2.1. Syllabic structure

As shown in Fig. 1, each syllable of Cantonese

can be divided into an optional Initial and an

obligatory Final. The Initial is a consonant, while

the Final consists of a nucleus complex with or

without an ending, which may be a nasal (-m, -n,
-N) or a stop (-p, -t and -k).

Table 1 lists the Initials of Cantonese. The 19

Cantonese Initials are labeled with JyutPing (Lin-

guistic Society of Hong Kong, 2002) spelling and

the International Phonetic Alphabet (IPA) en-

closed between slant lines. Table 2 lists the Finals

of Cantonese. There are 53 Finals in Cantonese.

2.2. Lexical tones

Cantonese has a rich inventory of tones. Tradi-

tionally, it is said there are nine tones in Canton-

ese, as idealized in text-book fashion in Fig. 2.

However, Fig. 3 displays time-aligned F0 contours

of the nine tones produced by a male subject who

speaks native Hong Kong Cantonese. Tones 7, 8
and 9 are short tones because they alone have stop

endings; these are called checked syllables. Since

their F0 values correspond to the long tones 1, 3



Table 1

19 Initials of Cantonese in JyutPing and IPA

Cantonese

JyutPing IPA Manner Place

b /p/ Plosive, unaspirated Labial

d /t/ Plosive, unaspirated Alveolar

g /k/ Plosive, unaspirated Velar

gw /kw/ Plosive, unaspirated Labial–velar

p /p�/ Plosive, aspirated Labial

t /t�/ Plosive, aspirated Alveolar

k /k�/ Plosive, aspirated Velar

kw /kw�/ Plosive, aspirated Labial–velar

z /ts/, /tS/ Affricate, unaspirated Alveolar

c /ts�/, /tS�/ Affricate, aspirated Alveolar

s /s/, /S/ Fricative Alveolar

f /f/ Fricative Labial–dental

h /h/ Fricative Glottal

l /l/ Liquid Lateral

m /m/ Nasal Labial

n /n/ Nasal Alveolar

ng /N/ Nasal Velar

j /j/ Glide Alveolar

w /w/ Glide Labial
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Fig. 3. F0 contours of lexical tones of Cantonese uttered by a

male speaker. The solid lines are for long tones on unchecked

syllables, while the dotted lines are for short tones on checked

syllables.
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and 6, respectively, they are labeled according to

their long tone counterparts. This is done in many

transcription schemes, including that of the Lin-

guistic Society of Hong Kong (LSHK), where only
Table 2

53 Finals of Cantonese in JyutPing and IPA

Cantonese

Vowel i /i/, u /u/, yu /y/, e /e/, oe /œ/, o /ø/, aa /a/

Vowel-nasal im /im/, in /in/, ing /IIN/, yun /yn/, un /un/, ung /f

an /án/, ang /áN/, aam /am/, aan /an/, aang /aN/

Diphthong ui /ui/, ei /ei/, eoi /�y/, oi /øi/, ai /ái/, aai /ai/, iu /

Vowel-stop ip /ip/, it /it/, ik /IIk/, yut /yt/, ut /ut/, uk /fk/, ek

aap /ap/, aat /at/, aak /ak/

Syllabic nasal m /m1 /, ng /N
1
/

Tone 1 Tone 2 Tone 3 Tone 4 Ton

Tones on unchecked syllables

F0

Fig. 2. Lexical tones of Cantonese as traditionally represented and la

other syllables are unchecked.
six distinct tones are labeled. There are totally five

levels in Fig. 2. And the idea of using five levels to

transcribe tones was first proposed in Chao (1930),

which has been generally accepted for describing

tones in Chinese, and generalized to all tone lan-
guages of the world (Wang, 1967).
N/, eng /eN/, eon /�n/, oeng /œN/, on /øn/, ong /øN/, am /ám/,

iu/, ou /øu/, au /áu/, aau /au/

/ek/, eot /�t/, oek /œk/, ot /øt/, ok /øk/, ap /áp/, at /át/, ak /ák/,

Tone 7 Tone 8 Tone 9e 5 Tone 6

Tones on checked syllables

beled. Checked syllables end in the consonants /-p, -t, -k/; while
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3. Feature extraction and normalization for tone

recognition

Feature extraction is crucial for representing a

speech signal in a compact and efficient manner
for ASR. In this section, the tone feature extrac-

tion scheme and three normalization schemes are

introduced.

3.1. Feature extraction for tone recognition

The tone of a syllable is mainly determined by

its F0 contour. The duration and energy are also
related to the tone. Furthermore, tonal coarticula-

tion effects, both carryover and anticipatory, have

been studied extensively in Shen (1990) and Xu

(1997) for Mandarin. For tone recognition in con-

tinuous speech, including contextual information

from the neighboring tones improves the recogni-

tion accuracy (Cao et al., 2000; Lee et al., 2002a).

For a given syllable, a tone-related feature vec-
tor, called a token, consists of the following 20 fea-

tures in our tone recognition scheme.

(1) Duration of the F0 contour of the target

syllable; F0 values at both the 1/3 and 2/3 time

points of each of the three uniformly divided

linearly-fitted F0 sub-contours; the means

of the three corresponding log-energy sub-
contours.

(2) The same three features (i.e., two F0 values,

mean of the log-energy) of the last sub-seg-

ment of the preceding F0 contour and the cor-

responding log-energy sub-contour, and the

first sub-segment of the following F0 contour
E E E E E E

D DD

 F0  F0  F0 F0 F0  F0  F0 F0

Target  syllable FoPreceding  syllable

3 102 2

Fig. 4. Schematic diagram of the 20 tone features. E and D represent e

of this figure indicate the numbers of features extracted from the cor
and the corresponding log-energy sub-

contour.

(3) Log-energy and duration of unvoiced/silent

segments both before and after the F0 contour

of the target syllable.

As illustrated in Fig. 4, the 10 features in (1) are

all extracted from the target syllable; the six fea-

tures in (2) are used to consider the tonal coartic-

ulation effect from the neighboring tones, while the

four features in (3) are used to implicitly represent

the degree of mutual influence between the target

tone and its neighboring tones. This feature selec-
tion scheme is similar to Chen and Wang (1995).

In our scheme, their slope feature of each line-

arly-fitted F0 sub-contour is discarded, and their

average F0 (F0 mean) is replaced by two F0 values

for each linearly-fitted F0 sub-contour. We make

these changes because in Mandarin, the slope fea-

ture is distinct for differentiate tones, but in Can-

tonese, the height of the F0 contour becomes
much more important because there are several

level tones in Cantonese.

3.2. F0 and energy normalization

Both the F0 and energy are extracted frame by

frame, with the same frame length and the same

shift between successive frames as in the setup of
feature extraction for training acoustic HMMs.

F0 is extracted with the autocorrelation method

in Praat (Boersma and Weenink, 2001). The range

of F0 values varies dramatically among different

speakers and also varies from time to time for each

speaker. The dynamic range of signal energy may
Linearly-fitted F0
sub-contours
Syllable sequence
(The solid lines and dashed
lines represent the voiced
and unvoiced portions of
syllables respectively )

Energy contour

E

 F0  F0

llowing  syllable

3

nergy and duration, respectively. The numbers in the upper part

responding speech segments.
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vary significantly from utterance to utterance, and

even within the same utterance. In Lee et al.

(2002a), an effective method, called MWN (mov-

ing window normalization), has been proposed

for Cantonese tone feature normalization, where
the window extends to two preceding tones and

four succeeding tones. Moreover, the average syl-

lable duration of CUSENT database (Lee et al.,

2002b), which is a read speech corpus and will be

described Section 5, is about 0.25s. Thus, we chose

the normalization window extending to the past

0.5 s and the future 1s of the target syllable. (The

effect of different windows sizes on tone identifica-
tion will be discussed in the discussion part of Sec-

tion 5.) We make this change, using duration

rather than the number of syllables to avoid the

dependence on syllable boundaries during normal-

ization. Furthermore, the log-scale transformation

of parameters has been generally adopted in the

framework of speech recognition (Rabiner and

Juang, 1993). So a log-scale 5-level transformation
will be used for the F0 parameters according to:

F 0
0ðiÞ ¼

log10ðF 0ðiÞ=MinÞ
log10ðMax=MinÞ � 4þ 1: ð1Þ

Herein, three schemes are involved in determin-

ing the Max and Min. This transformation will be

examined in the discussion part of Section 5.

1. Basic normalization scheme: Min and Max rep-

resent the minimum and maximum F0 values

within the above normalization window,

respectively.

2. Adaptive normalization scheme: a reservoir

which holds up to 4000 F0 values is used to

track the dynamic F0 range of a speaker. A

description of the scheme follows:
(a) The reservoir is first initialized to empty

when processing an utterance from a new

speaker (we need not know any other infor-

mation about the new speaker).

(b) The F0 values are inserted into the reservoir

in ascending order. If the number of F0 val-

ues exceeds the capacity (herein 4000) of the

reservoir, half of the F0 values in the reser-
voir are deleted alternately.

(c) The lowest 5% and the highest 5% of the

stored F0 values are deleted in order to
ignore outliers when determining the F0

range of the speaker. This limits the impact

of noise (e.g., sub and integral multiples of

the true F0 values) in the F0 values. The cor-

responding tone recognition accuracy is
reduced by about 10% when the outlier F0

values are not excluded. Then the low and

high ends of the remaining F0 values are

used for the Min and Max in Eq. (1),

respectively, of the F0 range of the speaker.

3. Extended adaptive normalization scheme: Mul-

tiple reservoirs which each hold up to 2000 F0

values are used to track the dynamic F0 range
of a speaker according to different time courses.

The first reservoir is used to track the F0 range

of the first second of the utterances; the second

reservoir will be used to track the F0 range of

the second sec. of the utterances; and so on.

The number of the reservoirs depends on the

duration of the longest utterance. A description

of the scheme follows:
(a) The reservoirs are first initialized as empty

when processing an utterance from a new

speaker (we need not know any other infor-

mation about the new speaker).

(b) The F0 values are inserted into the reser-

voirs in ascending order according to the

following rules. The first reservoir is set as

the default reservoir. When there are not
enough F0 values in this reservoir, all

new coming F0 values are inserted into this

reservoir until the number of the stored F0

values in this reservoir reaches the Usable

Point(UP) (herein 400). After that, the F0

values of the syllables whose starting time

falls in the first second will be inserted into

the first reservoir; the F0 values of the sylla-
bles whose starting time falls in the second

sec. will be inserted into the second reser-

voir; and so on. If the number of the F0 val-

ues exceeds the capacity (herein 2000) of

any reservoir, half of the F0 values in this

reservoir are deleted alternately.

(c) During normalization, when the starting

time of the target syllable falls in the nths,
we first check the number of the stored F0

values in the nth reservoir. If the number

is no less than the UP, then this reservoir
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Fig. 5. F0 contour of a Cantonese utterance by a female

speaker. The numbers in the syllables refer to Cantonese tones

as defined by the official spelling system, JyutPing.
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is used to calculate the corresponding F0

range. Otherwise, the previous reservoir is

checked until the number of the stored F0

values in this reservoir is no less than the

UP or the first reservoir is reached. The low-
est 5% and the highest 5% of the stored F0

values in the found reservoir are deleted in

order to ignore outliers when determining

the F0 range of the speaker. Then the low

and high values of those remaining corre-

spond to the Min and Max in Eq. (1),

respectively, of the F0 range of the speaker

during the corresponding time course.

Please note: the schemes 1, 2 and 3 of the

tone normalization correspond to the schemes 1,

2 and 3 of the tone recognition systems, respec-

tively.

The short-time log-energy is formulated as

E ¼ 10log10½Rð0Þ�; ð2Þ
where R(0) is the zeroth-order autocorrelation

coefficient of the discrete time signal of speech.

Then the log-scale energy is further re-scaled by

the average log-energy within the normalization

window.
3.3. Discussion

As is well known, there are large differences in

the F0 range among different speakers. The second

normalization scheme is proposed to capture the

dynamic F0 range of the speakers. F0 declination

over an utterance is a common phenomenon in

many languages including Cantonese, Mandarin

and Thai (Ohala, 1978; Li et al., 2002; Kochanski
and Shih, 2003; Potisuk et al., 1999). Fig. 5 depicts

the effect of the declination intonation pattern on

several tones. The second Tone 6 is lower than

the first Tone 6; the second Tone 5 is lower than

the first Tone 5; and the second Tone 3 is lower

than the first Tone 3. The third normalization

scheme is proposed to account for the declination

effect on tone recognition.
Tone feature normalization is crucial for tone

recognition. MWN (Lee et al., 2002a) has been

proposed for Cantonese continuous tone normali-

zation. A similar method has been adopted in our
basic normalization scheme. The second and third

normalization schemes have been proposed for

better tone recognition performance.
4. Tone recognition based on SVMs

Alongside with normalization, tone recognition
is also a problem of classification, that is, of assign-

ing unknown tone tokens to a finite set of classes or

categories (tone labels). In this section, SVM-based

binary-class classifiers will be first introduced.

Then the method of constructing tone recognition

system via binary-class classifiers will be presented.

Classifiers are typically optimized based on

some form of error minimization. Given a set of
‘ labeled examples:

ðx1; y1Þ; . . . ; ðx‘; y‘Þ; xi 2 RN ; yi 2 f1;�1g;
where x‘ is the example and y‘ is the class label (x‘
and y‘ correspond to tone tokens and tone labels

in tone recognition problem, respectively).

And a class of functions:

S ¼ ffag; fa : RN ! f1;�1g;
where a is an index and S is the function set.

The optimal function, fa0 in S is to be found by

minimizing some error functions. Typically,

empirical error minimization is one of the most

straightforward approaches when the goal is to
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find the function, i.e., the parameter set, which

minimizes the following error function (empirical

risk):

RempðaÞ ¼
1

2‘

X‘

i¼1

j1� yifaðxiÞj; ð3Þ

where a is an index for the parameter set, yi is the

class label and also the expected output while xi is

the given input, and ‘ is the size of the training

data.

Minimizing the empirical error can minimize
the classification error on the training data but

usually does not generalize well. As shown in

Fig. 6, the training examples are divided into two

classes, in which the empty circles belong to class

I and the black solid circles belong to class II.

All the hyperplanes, C0, C1 and C2, have zero

empirical error, and thus achieve perfect classifica-

tion. Suppose that C2 is selected as the classifier
and a new unknown sample, as shown in Fig. 6,

identified by the rectangular box comes for classi-
Marg
in

Class I

Class II

W

H
1

H
2

C
1

C
0

C
2

Origin

Fig. 6. Binary classification problem.

Table 3

ECOC matrix for a six-class problem, where 1/2 represents Tone 1 v

One-versus-one (pairwise)

1/2 1/3 1/4 1/5 1/6 2/3 2/4 2/5

1 1 1 1 1 0 0 0

�1 0 0 0 0 1 1 1

0 �1 0 0 0 �1 0 0

0 0 �1 0 0 0 �1 0

0 0 0 �1 0 0 0 �1

0 0 0 0 �1 0 0 0
fication. Obviously, the new sample should be rea-

sonably classified as class I, but it will be wrongly

recognized as class II by C2. Among the three

hyperplanes, C0 is the optimal hyperplane because

it maximizes the distance between the H1 and H2,
thereby offering better generalization.

SVMs are based on structural risk minimization

(SRM) where the aim is to learn a classifier that

minimizes the bound of the expected error (Burges,

1998; Vapnik, 1995). Therefore, SVMs can guar-

antee the optimal solution of the target problem.

As for the above example, the C0 will be selected

as the classification hyperplane by SVMs.
The power of SVMs lies in their ability to trans-

form data to high dimensional space where the

data can be separated using a linear hyperplane.

SVMs have been successfully applied to many pat-

tern recognition problems. Consequently, tech-

niques of SVMs have been used to construct our

tone classifiers.

SvmFu (Rifkin, 2001) was used to train a set of
binary-class classifiers. By using the approach of

error correcting output codes (ECOC) (Hastie

and Tibshirani, 1998), the binary-class SVM classi-

fiers are extended to perform multi-class classifica-

tion. For instance, if there are six tones in

Cantonese, then 15 ðC2
6Þ binary-class classifiers

have to be trained; an ECOC matrix with six rows

is given in Table 3.
For a given token x, the 15 binary-class classifi-

ers are applied to produce 15 hypotheses, h1,

h2 , . . . ,h15. Then the class label of token x can be

predicted by choosing the rth row of the ECOC

matrix which is closest to (h1(x), h2(x) , . . . ,h15(x)).
Furthermore, a classification score can be assigned

to each class label by
s. Tone 2, 1/3 represents Tone 1 vs. Tone 3, etc.

2/6 3/4 3/5 3/6 4/5 4/6 5/6

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 1 1 0 0 0

0 �1 0 0 1 1 0

0 0 �1 0 �1 0 1

�1 0 0 �1 0 �1 �1
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D MðrÞ; hðxÞð Þ ¼
Xl

s¼1

eMðr;sÞhsðxÞ; ð4Þ

where M is the code matrix, M(r) is the rth row

of the code matrix, and l is the number of columns

of the code matrix. The number of rows of the

ECOC matrix is equal to the number of tone

classes.
Table 5

Performance of the triphone models with different number of

mixtures, where �base syllable accuracy� is the syllable accuracy
without considering tonal differences

Number of mixtures Base syllable accuracy (%)
5. Experimental results

In this section, the database, the acoustic mod-

els and language models will be briefly introduced.

Then the experimental results of Cantonese tone

recognition will be presented. Possible reasons
for the severe confusions between some tone pairs

will be discussed. Finally, contributions to speech

recognition from different tone recognition

schemes will be compared.

5.1. Database

The Cantonese database we used is CUSENT
database (Lee et al., 2002b). In this database,

5100 training and another exclusive 600 test sen-

tences were selected from five local newspapers

of Hong Kong. The training sentences were evenly

divided into 17 groups, each containing 300 unique

sentences. Each group of sentences was read by

four speakers (2F, 2M). Thus, a total of 20,400

(300 · 4 · 17) training utterances were obtained
from 68 speakers. The 600 test sentences were di-

vided into six groups. Each group was read by

one male and one female speaker (not drawn from

the population of the training speakers). The total

number of test utterances is 1200. Table 4 summa-

rizes information about the database. Please note

corrupted recording utterances were excluded by

the developers (Lee et al., 2002b), so the num-
bers of utterances for training and test were
Table 4

Details of the CUSENT database

Properties Training data Test data

Number of speakers 68(34F,34M) 12(6F,6M)

Number of syllables 215,604 11,677

Number of sentences 20,378 1198
reduced from 20,400 and 1200 to 20,378 and

1198, respectively.

5.2. Acoustic modeling and language modeling

The acoustic models consist of context-depend-

ent Initial–Final models (tri-phone models), in

which each Initial model has three emitting states,

while a Final model has either three or five emit-

ting states, depending on its articulatory composi-

tion. The acoustic feature vector has a total of 39

components, including 12 MFCCs, energy, their

first-order derivatives and second-order deriva-
tives. The HMMs were trained with the training

set of the CUSENT database. A decision tree-

based clustering method was used to facilitate

sharing of model parameters.

After clustering, HMM states of some triphone

models were tied and the number of HMM para-

meters reduced dramatically. The Gaussian mix-

ture number of the HMMs was then increased
gradually by mixture splitting to model the speaker

variation effect. As shown in Table 5, when the

number of mixtures increases from eight to nine,

the performance improvement is not obvious, so

the eight-mixture system has been selected for fur-

ther processing. Please note that this result

(79.09%) outperforms the biphone system (73.1%)

using the same database (Lee et al., 2002b).
The language models, character-based bigrams

and trigrams, have been built with 3927 character

entries, which cover 99.99% of the training Can-

tonese text corpus. The training text contains

about 150 million Chinese characters from Wise-
1 73.12

2 75.62

3 76.76

4 77.34

5 78.12

6 78.51

7 78.89

8 79.08

9 79.18
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News (2001). Using the test data of CUSENT

database without tone information, character

accuracies of 72.40% and 80.90% were obtained

for bigrams and trigrams, respectively. This

eight-mixture system together with the character-
based trigrams serves as the baseline system in this

paper.

5.3. Experimental results of tone recognition

To obtain the training and test tone tokens for

tone recognition, forced alignment by the baseline
Table 6

Confusion matrix of tone recognition with tone normalization schem

Recognized tone

Tone 1 Tone 2 Tone 3 Tone 4 T

Tone 1 2201 38 141 6

Tone 2 79 1151 65 44

Tone 3 331 67 927 87

Tone 4 33 49 124 1334

Tone 5 17 221 72 81 2

Tone 6 144 85 524 305

Overall

Table 7

Confusion matrix of tone recognition with tone normalization schem

Recognized tone

Tone 1 Tone 2 Tone 3 Tone 4 T

Tone 1 2259 30 101 6

Tone 2 83 1176 53 50

Tone 3 215 74 1128 57

Tone 4 21 37 60 1575

Tone 5 7 213 55 82 2

Tone 6 83 91 531 239

Overall

Table 8

Confusion matrix of tone recognition with tone normalization schem

Recognized tone

Tone 1 Tone 2 Tone 3 Tone 4 T

Tone 1 2263 32 105 9

Tone 2 65 1190 50 43

Tone 3 160 71 1156 43

Tone 4 17 40 39 1589

Tone 5 6 197 55 87 2

Tone 6 52 90 505 211

Overall
HMMs was applied to obtain Initial–Final seg-

mentation for all training and test utterances.

Tone tokens extracted from 5992 training utter-

ances of the training set of CUSENT, from 20 (10

M, 10 F) randomly selected speakers, were used to
train the tone classifiers. Then tokens extracted

from all utterances in the test set of CUSENT were

used to evaluate the performance of the tone

classifiers.

The confusion matrices from the three tone nor-

malization schemes are shown in Tables 6–8,

respectively. Recall from Section 2, the number
e 1

Total tokens Accuracy (%)

one 5 Tone 6

7 38 2431 90.54

82 73 1494 77.04

26 480 1918 48.33

26 517 2083 64.04

50 174 815 30.67

44 1298 2400 54.10

64.28

e 2

Total tokens Accuracy (%)

one 5 Tone 6

3 32 2431 92.92

61 71 1494 78.71

29 415 1918 58.81

20 370 2083 75.61

59 199 815 31.87

48 1408 2400 58.67

70.06

e 3

Total tokens Accuracy (%)

one 5 Tone 6

2 20 2431 93.09

64 82 1494 79.65

31 457 1918 60.27

15 383 2083 76.28

81 189 815 34.48

55 1487 2400 61.96

71.50



Table 9

Tone feature selection and transformation

Feature Accuracy

(%)

(1) Chen and Wang�s features
(without normalization)

57.80

(2) (1) + Utterance wide normalization 58.55

(3) (1) + MWN 60.01

(4) Our features + MWN 64.06

(5) (4) + Simple log-transformation 57.17

(6) (4) + 5-Level transformation (in linear-scale) 63.52

(7) (4) + 5-Level transformation (in log-scale) 64.28

(8) (4) + 3-Level transformation (in log-scale) 62.37

(9) (4) + 7-Level transformation (in log-scale) 64.18

(10) (4) + 9-Level transformation (in log-scale) 63.94
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of actual tonal syllables, 1761, is less than half of

the number of possible syllables, i.e., 6 · 625 =

3750. A simple phonological constraint can be ap-

plied to eliminate those recognition results that are

not actual tonal syllables. Using this simple pho-
nological constraint, our recognition score for

the first normalization scheme increases from

64.28% to 69.39%; for the second normalization

scheme our score increases from 70.06% to

75.31%; and for the third normalization scheme

our score increases from 71.50% to 77.27%. Using

the same database, i.e., CUSENT, a tone recogni-

tion accuracy of 66.4% has been reported in Lee
et al. (2002a) based on HMMs; with the phonolog-

ical constraint, an accuracy of 72.92% has been

achieved by Qian et al. (2003) using overlapped

di-tone gaussian mixture models (ODGMM) for

the same database. Compared with these previ-

ously reported results, our algorithm using the

third normalization scheme achieves a substan-

tially greater accuracy.

5.4. Discussion

5.4.1. Discussion about the tone feature selection,

transformation and window size selection

As stated in Section 1, many approaches have

been proposed for tone recognition; an approach

that used neural networks to recognize continuous
Mandarin tone (Chen and Wang, 1995) is among

the most successful. Furthermore, Chen and

Wang�s features can be adapted to SVMs. Hence,

we have adopted their features except for changing

their slope and F0 means to two F0 values for each

linearly-fitted F0 sub-contour, as discussed in Sec-

tion 3. First, we compare the tone recognition accu-

racies of Chen and Wang�s features with our
different normalization methods. The advantage

of moving windows normalization (MWN) can

be observed in the first three rows of Table 9. Next,

we compare our features with Chen and Wang�s
features for Cantonese tone recognition. As indi-

cated in rows (3) and (4) in Table 9, our features

outperform Chen and Wang�s features by a consid-
erable margin. It is likely that in Mandarin, the
slope feature is distinct for different tones; but in

Cantonese, the height of the F0 contour becomes

much more important because there are several
level tones. In this case, the selection of tone fea-

tures depends on the structure of the tone system.

Several transformations of F0 values have been
examined. In row (4), the absolute F0 values are

transformed to relative ratios over the average F0

value (as reference F0 value) within the normaliza-

tion window. But in row (5), the F0 values are first

transformed into log-scale. Comparing row (5)

with row (4), this kind of simple log-transforma-

tion lowers the recognition performance. The pos-

sible reason is that this kind of log-transformation
dramatically diminishes the differences between F0

values. For instance, in linear-scale, 140/150 minus

120/150 is 0.1333, while in log-scale, log10(140)/

log10(150) minus log10(120)/log10(150) is only

0.0308 (150 serves as the reference F0 value).

However, when using 5-level transformation, the

transformation in log-scale does better than its

counterpart, as are shown in rows (6) and (7) of
Table 9. As shown in the last four rows of Table

9, 5-level transformation is better than other

choices. Interestingly, this is consistent with the

selection of number of levels for linguists to tran-

scribe tones (Chao, 1930).

The window sizes of MWN in Table 9 always

used 0.5 s left context and 1s right context. In

order to investigate the effect of different window
sizes on tone identification, different window sizes

have also been examined.

We first fix the length of right context to 1s.

From the left-most columns of Table 10, we ob-

serve that the accuracy decreases as the length of

left context increases beyond 0.25s, so we conserv-



Table 10

Tone recognition with different windows sizes

1s of right context 0.5s of left context

Length of left context (s) Tone recognition accuracy (%) Length of right context (s) Tone recognition accuracy (%)

0.25 64.30 0.50 63.80

0.50 64.28 0.75 64.29

0.75 64.04 1 64.28

1 63.99 1.25 64.23
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atively chose 0.5 s as the length of left context.

Then we fix the length of left context to 0.5 s. From

the right-most columns of Table 10, we observe the

accuracy decreases as the length of right context

drops below 0.75s or increases beyond 1s. So we

conservatively choose 1s as the length of right con-

text. This window size selection is consistent with

that reported in Lee et al. (2002b), where number
of syllables was used (recall the average syllable

duration is 0.25s).

5.4.2. Analysis of Cantonese tone recognition

With the help of the adaptive normalization

scheme, the performance of the tone recognition

system improves from 64.28% to 70.06%, i.e., a

16.18% relative error rate reduction. When the
intonation effect is simply considered by using

multiple reservoirs, a further 4.81% relative error

rate reduction has been obtained. Please note that

most utterances in CUSENT have a downdrift

intonation pattern because of the reporting style

characteristic of this database. However, the into-

nation patterns of spontaneous speech will be

much more complex. Therefore, further research
based on more complex intonation patterns will

be needed for improving tone recognition accuracy

of spontaneous speech.

As shown in the confusion matrices, the highest

recognition accuracy has been obtained for Tone 1

(high level tone). Because it occupies the highest

position of the Cantonese tone space; it is rela-

tively easy to distinguish this tone from all of the
other tones. Tones 3–6, which are at the middle

and low regions of the tone space, are much more

difficult to recognize correctly. Moreover, the

numbers of Tone 2 and Tone 5 tokens, are much

less (2309) than the numbers of tokens from other

tones. This is not due to any bias in the database
we used, but due to the normal distributional char-

acteristics (Wang and Cheng, 1987). In these tone

recognition experiments, the accuracy of Tone 5 is

extremely low, which is not consistent with the re-

sults from previous perceptual studies of Canton-

ese tones (Fok, 1974; Man, 1992).

In order to investigate possible reasons why

some tone pairs are so severely confused, an infor-
mal tone perception experiment has been carried

out. Six native Hong Kong residents served as sub-

jects. Syllables corresponding to the two tones

most frequently confused by our best tone recogni-

tion system, i.e., Tone 3 and Tone 6, were ex-

tracted for two female and two male speakers.

Two subsets of these syllables were used in this

experiment: syllables with Tone 3 but mis-recog-
nized as Tone 6, and syllables with Tone 6 but

mis-recognized as Tone 3 by our best tone recogni-

tion system. The number of such syllables used for

this perception experiment is 384. In total, there

are 2304 (384 · 6) trials; in each trial, subjects

are required to select the tone (Tone 3 or Tone

6) that they perceive, or, if they cannot identify

the tone, to indicate that fact.
During the perception experiment, two selected

utterances of each speaker, including all Cantonese

tones, are played twice to subjects for reference.

The syllable sets from each speaker are presented

to the subjects in random order; each syllable is re-

peated twice with a separation of 1s; the interval

between successive syllables is 3s. This perception

experiment is carried out speaker by speaker. In
our experiment, as shown in Table 11, there were

551 trials in which the subject made no decision;

there were 948 correct decisions and 805 incorrect

decisions; responses were identified as correct or

not based on the transcription provided by the

database.



Table 11

Results from perception experiment on Tone 3 and Tone 6

without preceding and following tonal context

Tone 3 Tone 6 Total Ratio (%)

Correct 504 444 948 41.15

Incorrect 312 493 805 34.94

Cannot decide 273 278 551 23.91

Table 12

Results from perception experiment on Tone 3 and Tone 6 with

preceding and following tonal context

Tone 3 Tone 6 Total Ratio (%)

Correct 493 552 1045 68.03

Incorrect 185 217 402 26.17

Cannot decide 54 35 89 5.80
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An additional perception experiment was car-

ried out to examine the effect of tonal context on

tone perception. In this experiment, we also pre-

served both the preceding and following tonal con-

text. The number of trials was changed to 1536

(384 · 4). All other conditions are kept unchanged.

The percentage of subjective uncertainty dropped

dramatically from 23.91% to 5.8%. However, as
shown in Table 12, the confusion between Tone

3 and Tone 6 was severe even with the help of

the limited tonal context.

One possible reason for the confusion may be

that these two tones are in the process of merging

as a sound change in progress. (A merger occurs

when two phonemes become one phoneme. This

has happened, for instance, for two English vow-
els, resulting in the homophony of words such as

�meet� and �meat�. In our case, the two phonemes

are Tone 3 and Tone 6, which cannot be correctly

distinguished by either our tone recognizers or by

human subjects cf. Table 8 and Table 12 above).

Merger can take place at least in two ways, i.e.,

by speaker and by word (Wang, 1969). Such a

merger might also occur between other tone pairs.
This is an interesting question which merits further

study. Another possible reason is that these two

tones are both located at the lower part of the

Cantonese tone space (recall Figs. 2 and 3), which

is much more crowded than the upper part. Conse-

quently, lower recognition accuracies have been

obtained for those lower tones, especially for Tone
3, Tone 5 and Tone 6. Among these three tones,

both Tone 3 and Tone 6 are level tones, which

make them even more prone to error. And this

might be one of the reasons for these two tones

to merge. One other possible reason for the severe
confusion in this pair of tones might be segmenta-

tion errors produced by the forced alignment, a

discrepancy between the segmentation of comput-

ers vs. humans, however, these errors would afect

the accuracy in recognizing all six tones.

5.5. Incorporation tone knowledge into Cantonese

LVCSR

The Parallel Tone Score Association (PTSA)

method is adopted here to incorporate tone recog-

nition into speech recognition (Peng and Wang,

2004). The basic idea of PTSA is to add a tonal

contribution in parallel to syllable lattice genera-

tion. When a syllable in one path reaches its end

state, it may be added to the syllable lattice. If it
is added to the syllable lattice, then it will be ex-

panded to all possible tonal syllables (since not

all base syllables co-occur with every tone, only

possible tonal syllables will be considered). How

to distribute the total tonal contribution to each

tonal syllable is the crucial aspect of the tonal syl-

lable lattice generation. Because only voiced

frames have meaningful F0 values, and F0 is by
far the most important manifestation of tones,

we define the total tonal contribution over the

voiced frames as:

STone ¼ C � L; ð5Þ

where C is a language related constant, and L is

the number of voiced frames of the target syllable.
If STone is equally distributed to each tonal sylla-

ble, then no tonal syllables will be preferred; con-

sequently, an equal amount of tonal score will be

added to each path of the lattice. But in PTSA,

each tone is assigned a recognition score by the

tone classifier based on the tone-related feature

vector (tone token), and then STone will be distrib-

uted to each tonal syllable proportionally accord-
ing to its tonal recognition score.

All three schemes of tone normalization are

evaluated for determining tonal contributions

to Cantonese speech recognition. Experimental



Table 13

Performance of the integrated systems

Speaker

(M: male, F: female)

Base syllable

accuracy (%)

Character accuracy (%)

Without

tone (%)

With scheme

1 (%)

Improvement

(%)

With scheme

2/3 (%)

Further improvement

(scheme 2/3) (%)

01 (M) 75.81 83.12 86.84 3.72 87.55/88.00 0.71/1.16

02 (M) 83.66 85.50 89.00 3.50 89.50/89.60 0.50/0.60

03 (M) 73.52 79.97 81.51 1.54 82.30/82.40 0.79/0.89

04 (M) 78.00 79.98 85.50 5.52 86.31/86.52 0.81/1.02

05 (M) 82.33 76.88 83.96 7.08 83.83/84.38 �0.13/0.42

06 (M) 77.78 78.13 83.76 5.63 84.26/84.93 0.50/1.17

07 (F) 83.86 80.23 83.39 3.16 83.30/83.60 �0.09/0.21

08 (F) 84.00 84.59 87.07 2.48 88.78/88.93 1.71/1.86

09 (F) 76.89 79.53 83.32 3.79 83.90/84.09 0.58/0.77

10 (F) 79.57 81.49 84.56 3.07 84.45/84.56 �0.11/0.00

11 (F) 75.52 80.39 84.07 3.68 84.98/84.88 0.91/0.81

12 (F) 78.24 82.35 86.06 3.71 86.02/86.27 �0.04/0.21

Overall 79.08 80.90 84.90 4.00 85.42/85.66 0.52/0.76
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results are shown in Table 13. Considerable

improvement has been achieved by incorporating

tone information into speech recognition using

scheme 1. When using scheme 2, although overall

performance is improved from 84.90% to

85.42%, four out of 12 speakers show lower scores

compared with using scheme 1. When using
scheme 3, there is consistent improvement for all

speakers. Considerable improvements are ob-

tained for more than half of the speakers. Further-

more, the overall performance of the LVCSR

system is improved from 84.90% with scheme 1

to 85.66% with scheme 3, i.e., a 5.1% relative

reduction in the character error rate. As for the

value of the language related constant C, defined
in Eq. (5), the values 30, 40 and 42 were selected

empirically for scheme 1, scheme 2 and scheme 3,

respectively. Larger C values were chosen for the

stronger tone recognition systems due to their

greater tone recognition accuracies.
6. Conclusions

Several tone normalization schemes have been

investigated in the present paper. The adaptive

normalization method was found to reduce tone-

irrelevant variation of F0 values. As a result, tone

recognition accuracy was significantly improved

from 64.28% to 70.06%, i.e., a 16.18% relative

error rate reduction. When the intonation effect
is taken into consideration in a very simple way,

tone recognition accuracy was further improved

from 70.06% to 71.50%, resulting in another

4.81% relative error rate reduction. This accuracy

of 71.50% compares favorably with the 66.4% re-

sult reported earlier for the same task (Lee et al.,

2002a). Speech recognition results also verify the
expectation that the more accurate the tone

recognizer is, the greater its contribution is to the

speech recognition accuracy. This result should

encourage further investigation to more fully ex-

ploit the potential of tone information for improv-

ing the tone recognition. The normalization

schemes investigated in this paper can also be ap-

plied to other tone languages, such as Mandarin
and Thai, to achieve similar benefits in speech

recognition.
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