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Abstract. This paper presents an innovative method for prosody modeling in Chinese speech recognition. Our
method first evaluated the reliability of the prosodic information by which the recognition system dynamically tunes
the balance between the spectral scores and prosodic scores. The basic idea of this method is to use prosodic knowl-
edge based on its reliability. The higher the reliability, the more the prosodic information contributes to recognition.
Thus, this method will not introduce extra errors but will incorporate more knowledge into the recognition system.
Experimental results showed that this method reduced the relative word error rate by as much as 52.9% and 46.0%
for Mandarin and Cantonese digit string recognition tasks, respectively. When incorporating tone information into
Cantonese Large Vocabulary Continuous Speech Recognition (LVCSR) via the proposed method, a 20.16% relative
character error rate reduction was obtained.
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1. Introduction

Prosody is a collection of supra-segmental features,
notably intensity, duration and F0 (Fundamental Fre-
quency), that are critical to human speech percep-
tion. The prosodic information of speech is closely
related to various linguistic and non-linguistic fea-
tures, such as word meaning, syntactic structure and
the speaker’s emotion and intention. In speech commu-
nication, it plays a very important role in the transmis-
sion of information. From the applied point of view,
many prosody modeling methods (Burshtein, 1996;
Ferguson, 1980; Huang and Seide, 2000; Lau et al.,
2000; Lee et al., 1990; Levinson, 1986; Rabiner, 1984a,
b, 1989; Ramesh and Wilpon, 1992; Russell and Moore,
1985; Wilpon et al., 1991) have been proposed to in-
corporate prosodic knowledge into speech recognition
systems.

Although prosodic information has been proved use-
ful in speech recognition, many Automatic Speech
Recognition (ASR) systems process only spectral cues.
They ignore or deliberately remove prosodic cues, due

to the large variations in such cues and the lack of ef-
ficient algorithms that can extract duration and funda-
mental frequency from speech signals with high accu-
racy. Especially in noisy environments, the prosodic
information extracted from speech signals may be
very unreliable. Nevertheless, extending speech recog-
nition systems to human performance levels will re-
quire exploiting all available cues, including prosodic
information.

This paper will address an innovative prosody mod-
eling method in speech recognition for Mandarin and
Cantonese. We concentrate on a practical approach to
tone and duration modeling within the framework of
Hidden Markov Models (HMMs).

In the next section, phonological and phonetic
properties of both Mandarin and Cantonese will
be described. Then, the innovative prosodic model-
ing method, Reliability Guided Prosody Modeling
(RGPM), will be introduced in Section 3. The databases
used for evaluation and experimental results will be
described in Section 4. Finally, conclusions and future
work will be discussed in Section 5.
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Figure 1. Syllable structure of Chinese dialects. [ ] means optional
(Wang, 1973)

2. Chinese Phonology and Phonetics

Each Mandarin and Cantonese utterance can be viewed
as a concatenation of mono-syllabic sounds. Typi-
cally, each Chinese character is pronounced as a mono-
syllable. However, a Chinese character may have mul-
tiple syllable pronunciations, called polyphones, while
one pronunciation can be shared by several characters,
in which case they are called homophones.

Chinese is a tonal language in which F0 patterns are
used to build words, much as consonants and vowels
do, while in English, the F0 patterns of a syllable indi-
cate stresses and intonations. There are 1761 so-called
tonal syllables in Cantonese and 1471 tonal syllables in
Mandarin; ignoring tonal differences, there are about
625 and 420 so-called base syllables, in Cantonese and
Mandarin respectively.

2.1. Syllabic Structure

As shown in Fig. 1, each syllable of both Mandarin and
Cantonese can be divided into an optional Initial and
an obligatory Final. The Initial is a consonant, while
the Final consists of a vowel complex (including a sin-
gle vowel) with or without an ending, which may be a
nasal, a retroflex or a stop. The retroflex does not oc-
cur in Cantonese, while the stop ending is not used in
Mandarin. Furthermore, in Mandarin, there are three
widely used medials, /i/, /u/ and /y/. On the other hand,
in Cantonese, there is only one medial, /u/, and this
medial can only occur after the velar Initials. In order

Tone 1 Tone 2 Tone 3 Tone 7 Tone 8 Tone 9Tone 4 Tone 5 Tone 6

Tones on unchecked syllables Tones on checked syllables

F0

Figure 2. Lexical tones of Cantonese.

to avoid this kind of skewed distribution, most phonol-
ogists view this medial, /u/, as a part of the labialized
velar Initials. So phonologically, we can say there is
no medial, but phonetically, there is still one medial in
Cantonese.

2.2. Lexical Tones

Cantonese has a rich inventory of tones. Traditionally,
it is said there are nine tones in Cantonese, as shown
in Fig. 2. Each tone on checked syllables corresponds
to a tone on unchecked syllables in terms of the F0

pattern, so it also can be said there are six tones in
Cantonese. In Mandarin, there are only four lexical
tones, as show in Fig. 3, and one neutral tone whose
F0 contour completely depends on its immediately pre-
ceding tone, which is a highly context-dependent tone.

2.3. Initials

Table 1 lists the Initials for both Mandarin and
Cantonese. The 19 Cantonese Initials are labeled with
JyutPing and the International Phonetic Alphabet (IPA)
(LSHK, 2002), while the 211 Mandarin Initials are la-
beled with Pinyin and IPA (Lin and Wang, 1992).

2.4. Finals

Table 2 lists the Finals for Mandarin and Cantonese.
There are 53 Finals in Cantonese and 372 Finals in
Mandarin.

3. Reliability Guided Prosody Modeling

Although prosodic information is important for speech
recognition, such information extracted from speech
signals may not be very reliable. If the wrong



An Innovative Prosody Modeling Method 131

Tone 1 Tone 2 Tone 3 Tone 4
F0

Figure 3. Lexical tones of Mandarin.

information is added to the recognizer, it may introduce
extra errors. Nevertheless, the overall performance will
be improved by incorporating more information into
ASR. Suppose we can measure the reliability of the
prosodic cues. The higher the reliability, the more the
contribution from such cues will be when incorporated
into the recognition system. In this way, the perfor-
mance of ASR systems should be significantly im-
proved by using such a RGPM method. Note that inten-
sity is the easiest parameter to extract from the speech
signal, and we need not estimate its reliability.

3.1. Reliability Estimation of Tone Contours

The F0 values extracted automatically from the speech
signals may not be reliable enough to allow correct

Table 1. Initials of Mandarin and Cantonese.

recognition of the tones, due, at least in parts to the ex-
traction algorithms, tonal coarticulation, and the qual-
ity of the speech itself.

3.1.1. Factors Related to Tone Variation. Tone vari-
ation according to different tonal contexts, i.e., tone
coarticulation, has been found in the continuous speech
of many tone languages, such as Mandarin and Thai
(Potisuk et al., 1999; Shen, 1990; Wu, 1984; Xu, 1994,
1997). Wu (1984) reported that in trisyllabic words
in Mandarin, the F0 contours of tones vary in differ-
ent tonal contexts. Shen (1990) found that tones in tri-
syllabic sequences in Mandarin were affected by both
carryover and anticipatory3 coarticulation. Xu (1994,
1997) studied contextual tonal variation in Mandarin
systematically and indicated that the F0 contour of a
tone can sometimes be distorted beyond easy recog-
nition without taking into consideration the preceding
tones. He also pointed out that the carryover effect is
larger than the anticipatory effect.

As for the effects of speaking rate on tones, Gandour
et al. (1999) investigated the effects of speaking rate on
Thai tones. They found that Thai tones with substantial
F0 movement (falling, high, rising) exhibit overall flat-
ter slopes at fast speaking rates; those tones with less
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Table 2. Finals of Mandarin and Cantonese.

F0 movement (mid, low) display steeper slopes. Wu
(1984) also indicated that tones in trisyllabic words
can have their F0 contours distorted at fast speaking
rates.

From prior studies and our observation, the faster
the speaking rate, the heavier the coarticulatory effect.
We hypothesize that (1) if the speaking rate is no faster
than average, then the tone coarticulatory effect will
not affect the recognition of tones; (2) if the tone has
no tonal context, then there is no need to consider the
coarticulatory effect; and (3) if the tone has only right
context or left context, then the coarticulatory effect
should be weaker than when it has both contexts. Then,
the effect of speaking rate on the reliability of the F0

contours is defined as

f1 =




1 if α ≥ 1, or without
tonal context,

min{1, 1.2α} with either left or right
tonal context,

α otherwise,

(1)

where the number ‘1.2’ (and also the numbers in the
following formula) in Eq. (1) was determined empiri-
cally, and α is the speaking rate of an utterance, defined
as

1

N

N∑
i=1

di

µi
, (2)

where N is the number of syllables in that utterance, di

is the duration of the i th syllable, and µi is the average
duration of the i th syllable in a corresponding position
(final position or non-final position).

3.1.2. Factors Related to Speech Quality. When pro-
ducing Mandarin Tone 3, the phonation type of the
middle speech segment always changes from normal

voice to fry voice4 (Kong, 2001). It is very difficult
to use traditional methods to describe the F0 values in
those segments whose voice type is fry. Technically,
the result of this phenomenon is identical to situations
in which the F0 values cannot be extracted from voiced
speech segments.

3.1.3. Factors Related to F0 Extraction Algorithms.
Some F0 values may be wrongly extracted from the
speech signal for several reasons. Talkin (1995) sum-
marized the difficulties of F0 extraction. In Mandarin
and Cantonese, the following features make F0 difficult
to estimate:

(1) Sub-harmonics of F0 often appear that are sub-
multiples of the “true” F0;

(2) Vocal tract resonances and transmission channel
filtering can emphasize higher harmonics than the
first harmonic, which misleads the identification
by an integral multiple of F0;

(3) In some cases, when strong sub-harmonics are
present, the most reasonable objective F0 estimate
is clearly in conflict with auditory perception;

(4) Occasionally, F0 actually jumps up or down by an
octave; and

(5) In many cases, irregular voicing is present at the
voice onset and offset, and very low energy may
be present at the ends of syllables, which decreases
wave-shape similarity in adjacent periods.

Although hundreds of F0 extraction algorithms
(Hess, 1983; Talkin, 1995) have been proposed to over-
come the above difficulties, no algorithm yet can guar-
antee the perfect extraction of F0. The following effects
related to F0 extraction were considered in the calcu-
lation of the reliability of the F0 contour.

(1) As shown in Fig. 4, some parts of the F0 con-
tour were missing, that is, the values of F0 were
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Figure 4. Some parts of the F0 contour are missing.

not determined by the F0 extraction algorithms. If
there were missing parts in the middle of the F0

contour, as shown in pane 1, we just discarded this
information because the reliability of this incom-
plete F0 was very low. If the missing parts were at
the beginning or end of the F0 contour, as shown
in panes 2 and 3, then we calculated the effective
rates which indicates the percentage of the whole
F0 that was determined.

f2 =



0 with middle missing parts,
DF0

Dvoiced
otherwise,

(3)

where DF0 was the duration of the F0 contour, and
Dvoiced was the duration of the voiced part of the
corresponding syllable.

(2) The degree of jitter of F0 contours. Normally, there
are some jitters of the F0 contours during the vibra-
tion of the vocal cords. Due to physiological con-
straints, the jitters should have some limits. Here,
we used a cubic curve fitting to fit the F0 con-
tour, then calculated the Average Square Deviation
(ASD, i.e., the fitting error), which was defined as

ASD = 1

N

N∑
i=1

(F(i) − f (i))2, (4)

where N was the number of F0 values, F(i) 1 ≤
i ≤ N were the values of the F0 contour, and f (i)
1 ≤ i ≤ N were the corresponding cubic curve-
fitted values of the F0 contour.

f3 =



1 if ASD ≤ 10,

10

ASD
otherwise.

(5)

3.1.4. Reliability of F0 Information. We combined
the above measurements simply by multiplication. The

result is the reliability of F0 information as defined by

RF0 = f1 × f2 × f3, (6)

where RF0 stands for the reliability of an F0 contour.

3.2. Reliability Estimation of Duration Information

Each Mandarin or Cantonese syllable, corresponding
to a Chinese character, consists of an optional Initial
and an obligatory Final. Each word is built from one
or several syllables (by morphology). Each sentence is
composed by concatenating several words (by syntax).
As shown in Table 3, the usable duration cues for a
syllable embedded in a sentence include: (1) the du-
ration of the whole syllable (here we considered the
ratio of its duration over its average duration), which is
identical to the summation of the duration of its Initial
and that of its Final; (2) the ratio of the duration of its
Final over the duration of its Initial if the syllable had
an Initial (hereafter we call it the Final-Initial duration
ratio); and (3) the ratios of its duration over that of its
preceding syllables in the same sentence (hereafter we
call them the inter-syllabic duration ratios).

In order to make the inter-syllabic duration ratio in-
dependent of the syllables themselves, the duration of
syllables embedded in a sentence was normalized by
their average duration (corresponding to their intrinsic
duration), with consideration of other factors such as
different positions. The 2nd feature in Table 3 then was
the weighted mean of the preceding inter-syllabic ra-
tios of these normalized durations, with larger weights
being given to those ratios calculated from relatively
‘reliable’ syllabic durations.

Due to the phonetic properties of different speech
units (Initials and Finals) and the syllabic structure
of Mandarin and Cantonese, the boundaries of some
speech units can be identified more accurately than
those of others. By studying the phonetic properties
and the confusion matrix produced by the baseline

Table 3. Features used for duration modeling.

1. The Final-Initial duration ratio if the syllable being
processed has an Initial.

1 feature

2. The weighted average of inter-syllabic duration
ratios.

1 feature

3. The ratio (relative duration) of the duration of the
syllable being processed over its average duration
in corresponding position.

1 feature
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recognizer, we divided the Initials (and also syllables)
into two sets: a reliable duration set and an unreliable
duration set. For example, the duration of fricative and
affricate Initials can be identified more easily and ac-
curately than that of other Initials.

Then, the following considerations were be taken
into account when evaluating the reliability of duration
information:

(1) Factors related to Initial duration, defined as:

d1 =



1 if the duration of Initials is reliable,

0 if duration information of Initials
is not available or reliable; and

(7)

(2) Factors related to inter-syllabic duration ratios de-
fined as (refer to the second duration feature):

d2 =




1 if some of the preceding syllables
have reliable duration,

0 if there are no preceding syllables,

0.5 otherwise.

(8)

Finally, the reliability of duration information of the
syllable or combination being processed was defined
as:

RD =




1 d1 = 1 & d2 = 1,

0.8 either d1 = 1 or d2 = 1,

0.3 d1 = 0 & d2 = 0,

0.5 otherwise.

(9)

3.3. Prosody Modeling Method

3.3.1. Tone Modeling Method. Both the F0 values (in
Hz) and the energy values (in dB) were extracted by
Praat (Boersma and Weenink, 2001). The features used
in our tone recognition scheme are listed in Table 4. Ten
features were extracted from the syllable being pro-
cessed; the remaining features were used to consider
the tone coarticulatory effects. Then, Support Vector
Machines (SVMs) (Burges, 1998) were used to con-
struct the tone classifiers.

3.3.2. Duration Modeling Method. In Chinese
speech recognition, some syllables or combinations are
systematically related to insertion or deletion errors.

Table 4. Features for tone classification.

1. Duration of the F0 contour of the syllable being
processed; the average F0 values and the slopes
of the three uniformly divided linearly-fitted F0

sub-contours; the means of the three correspond-
ing log-energy sub-contours.

10 features

2. The same three features (i.e., log-energy, F0 mean
and slope) of the last sub-segment of the pre-
ceding F0 contour and the corresponding log-
energy sub-contour, and the first sub-segment of
the following F0 contour and the corresponding
log-energy sub-contour.

6 features

3. Log-energies and duration of unvoiced/silent seg-
ments both before and after the F0 contour of
the syllable being processed.

4 features

Table 5. Confusable pairs
related to syllable / /.

We divided the easily confusable syllables and com-
binations into various sets. For instance, there were
nine confusable pairs related to the syllable / / in
Mandarin, as shown in Table 5.

The duration features selected for duration modeling
are shown in Table 3. Four pairs of multivariate Gaus-
sian functions were be used to describe the duration
information of each confusable pair according to four
different positions: one pair of Gaussian functions was
for the starting position, one pair was for the non-final
position, one pair was for the final position, and the
remaining pair was for single-syllable sentence and its
counterpart.

3.4. Reliability Guided Prosody Modeling Method

The reliability was further transformed to a weight by

w = e−α(1−R), (10)

where α was the growth rate of the exponential func-
tion, and R was the reliability of F0, or the duration
information.
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Table 6. Training and test data for Mandarin and Cantonese, where
‘#’ stands for ‘Number’.

Mandarin Cantonese

Properties Training data Test data Training data Test data

# of Speakers 75 17 40 12

# of Syllables 24,075 5,452 81,963 20,498

# of Sentences 6,000 1,360 22,387 5,598

Thus the final scores were obtained by combining
the prosodic scores with the spectral scores produced
by HMMs via the above weight. Then, the final recog-
nition was be based on these final scores.

4. Preliminary Evaluation

4.1. Small Vocabulary Task

4.1.1. Database. The Mandarin database used in this
study was from the Beijing Institute of Automation
(Zhang et al., 1999), while the Cantonese speech
database, CUDIGIT, was developed by the Chinese
University of Hong Kong (Lee et al., 2002a). Table 6
gives a summary of the training and test data for our
study.

4.1.2. Acoustic Modeling. Phonetically, there are five
Initials and nine Finals in Mandarin digits, while there
are six Initials and nine Finals in Cantonese digits, as
shown in Table 7, so a total of 14 and 15 base phone
models were trained for Mandarin and Cantonese, re-

Table 7. Ten digits of Mandarin and
Cantonese. In Mandarin, digit ‘1’ has
two pronunciations, and Tone 3 always
changes to Tone 2 when its following
tone is also a Tone 3 due to the tone-
sandhi rule (Wang and Li, 1967).

spectively. For the base phone models of both di-
alects, 3-state left-to-right continuous gaussian density
HMMs without skipping states were adopted.

Furthermore, the cross word (each digit is also a
word) triphone unit has been shown to be more accu-
rate than the whole word unit and the word internal
triphone unit. A decision tree-based clustering method
was used to obtain the triphone sets. This method re-
quired a phonetic question set to cluster the kth HMM
state of all triphones that shared the same base phone.
By studying an English phonetic question set used in
the ARPA Resource Management task, phonetic ques-
tion sets for Mandarin and Cantonese were designed
separately. Each question set asked a question like
“does a triphone’s left/right context belong to the spec-
ified set of this question?”. Questions were designed
so that all phones that appeared at the context part of a
question had similar manner or place of articulation.

4.1.3. Prosody Incorporation. In Mandarin digit
string recognition, the tone information is very use-
ful for reducing the number of substitution errors. As
shown in Fig. 5, suppose there is a confusable set, {/ /
and / /}, whose spectral scores (probability) are 0.38
and 0.32 (wrongly recognized as digit ‘4’ only using
the spectral score), respectively. The tone recognition
scores for Tones 1–4 are 0.42, 0.17, 0.08 and 0.33, re-
spectively. The reliability of the F0 contour is 0.8 (the
weight will be e−2 ∗ (1−0.8) = 0.67). Note that these
numbers are provided purely for illustration. With the
language constraints of Mandarin digit strings, the syl-
lable / / can only be associated with Tone 1, while
syllable / / can only be associated with Tone 4. Fi-
nally, the most likely result of this example would be
for syllable / /, with Tone 1, to be correctly recog-
nized as digit ‘7’ (0.38 + 0.67 × 0.33 = 0.6011 <

0.6014 = 0.32 + 0.67 × 0.42).
As for confusable patterns related to insertion and

deletion errors, the process is illustrated as follows.
When a syllable or combination in a confusable pair
occurred, we decided whether it was a syllable or com-
bination by comparing the weighted sum of the spectral
score and the duration score. Finally, the experimental
results for Mandarin are shown in Table 8.

In Cantonese digit string recognition, the tone infor-
mation is not very useful for reducing the number of
substitution errors, but the duration is very useful for
reducing the numbers of insertion and deletion errors.
The experimental results for Cantonese are shown in
Table 9.
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Figure 5. Schematic process of combining spectral scores with tonal scores. With the language constraints of Mandarin digit string, the syllable
/ / can only be associated with Tone 1, while syllable / / can only be associated with Tone 4. Without consideration of language constraints,
we would need to choose among 2 × 4 = 8 options, instead of just 2 options.

4.1.4. Discussion. The above methods post-process
only the 1-best recognition result of the HMM recog-
nizers. In Mandarin, several pairs of digits are severely
confused, e.g., digit ‘7’ and digit ‘4’, digit ‘8’ and digit
‘2’, which contribute more than half of the confusion
errors (Peng, 2002). As shown in Fig. 5, such errors can
be significantly reduced by using tone information. In
Mandarin, digits ‘1’ (for pronunciation /i/) and ‘5’ con-
sist of only single vowels, and digit ‘2’ also has a heav-
ily rhotacized vowel. These three digits, due to their
short duration and vowel-only structure, are strongly
coarticulated with adjacent digits in continuously spo-
ken digit strings. Around 85% of insertion and deletion

Table 8. Word accuracy (%) of the baseline system, and
baseline system with RGPM for Mandarin, where ‘Acc.’
stands for accuracy, ‘Del.’ for deletion errors, ‘Sub.’ for
substitution errors and ‘Ins.’ for insertion errors. (Note that
each state of HMMs finally has 8 mixtures.)

System Word Acc. Del. Sub. Ins.

Baseline 97.58% 47 40 45

Baseline + RGPM 98.86% 18 15 29

Table 9. Word accuracy (%) of the baseline system, and
baseline system with RGPM for Cantonese.

System Word Acc. Del. Sub. Ins.

Baseline 98.19% 265 28 78

Baseline + RGPM 99.02% 126 28 47

errors, e.g., the combination ‘7’ + ‘1’ is highly con-
fused with ‘7’, are related to them. In Cantonese, the
digit ‘5’ is pronounced as a syllabic nasal, which is
often confused with the nasal coda of digits ‘0’ and
‘3’, e.g., combination ‘3’ + ‘5’ is confused with ‘3’.
The above experimental results show that the duration
information can be used to reduce such insertion and
deletion errors.

The prosodic cues were used only to deal with some
specific pairs, which are confused at the articulatory
level, but can be distinguished at the prosodic level. The
highest recognition accuracy was obtained by incorpo-
rating prosodic information into HMM-based recog-
nizers via the above methods for both Mandarin and
Cantonese digit string recognition (Lee et al., 2002a;
Zhang et al., 1999). However, the usability of this idea
for LVCSR is questionable if evaluated only for digits.
But in the following text, this idea will be extended to
incorporate tone information into Cantonese LVCSR.

4.2. Large Vocabulary Task

4.2.1. The Baseline LVCSR System. The acoustic
models consisted of context-dependent Initial-Final
models, in which each Initial model had three emit-
ting states, while a Final model had either three or five
emitting states, depending on its articulatory compo-
sition. Each emitting state consisted of eight Gaussian
mixtures. The acoustic feature vector had a total of
39 components, including 12 Mel-Frequency Cepstral
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Table 10. Training and test data of CUSENT, where ‘#’, ‘F’ and
‘M’ stand for ‘Number’, ‘Female’ and ‘Male’ respectively. The pop-
ulations of the training data and test data are completely exclusive.

Properties Training data Test data

# of Speakers 68(34 F, 34 M) 12(6 F, 6 M)

# of Syllables 215,604 11,677

# of Sentences 20,378 1,198

Coefficients (MFCCs), energy, their first-order deriva-
tives and second-order derivatives. The HMMs were
trained with the CUSENT database (Lee et al., 2002a),
which is shown in Table 10. A decision tree-based clus-
tering method was used to facilitate sharing of model
parameters. A base syllable recognition accuracy of
79.08% was obtained for the test set from the CUSENT
database.

The language model, character-based trigrams, was
been built with 3,927 character entries, covering
99.99% of the Cantonese training text corpus. The
training text contains about 150 million Chinese char-
acters from WiseNews (2001). Using the test data of
the CUSENT database and the above language model,
a character recognition accuracy of 80.90% was ob-
tained without using tone information.

4.2.2. Tone Recognition. The features used in the
Cantonese tone recognition scheme were slightly dif-
ferent from those shown in Table 4. The feature slope
was deleted, and the average F0 (F0 mean) was re-
placed with two F0 values, one of which is at the 1/3
time point, while the other is at the 2/3 time point,
of the linearly-fitted F0 sub-contour. We made these
changes because in Mandarin, the slope feature is dis-
tinct for different tones. But in Cantonese, the height of
the F0 contour becomes much more important because
there are several level tones. In this case the selection
of tone features depends on the structure of the tone
system.

To facilitate the tone feature extraction, forced align-
ment was applied to the training and test utterances of
the CUSENT database to obtain Initial-Final segmen-
tation. Then a normalization method similar to Moving
Window Normalization(MWN) was used for tone nor-
malization (Lee et al., 2002b). In our method, the nor-
malization window extended to the previous 0.5 second
and the following 1 second of the syllable being pro-
cessed, not the two preceding syllables and four suc-
ceeding syllables as used in MWN.

Then, the Support Vector Machines were used to
construct the tone classifiers. An accuracy of 63.1%
for tone recognition was obtained.

4.2.3. Tone Incorporation During Lattice Generation.
The basic idea was to add tonal contribution during
syllable lattice generation. When a syllable in one path
reaches its end state, it may be added to the syllable
lattice. If it is added to syllable lattice, then it will be
expanded to six possible tonal syllables (illegitimate
tonal syllables will be omitted). The diagram of this
expansion is shown in Fig. 6. Determining how to dis-
tribute the total tonal contribution to each tonal syllable
is the crucial point of the tonal syllable lattice genera-
tion. Because only voiced frames have F0 values, we
defined the total tonal contribution as

STone = C1 × L , (11)

where C1 was a language-related constant (30 was se-
lected empirically for Cantonese), and L was the num-
ber of voiced frames of the syllable being processed.
If STone is equally distributed to each tonal syllable, no
tonal contribution is added to the tonal syllable lattice
generation, because an equal amount of tonal score will
be added to each path of the lattice. However, each tone
may be assigned a different recognition score by the
tone classifier based on the tone-related feature vector
(tone token). These recognition scores are then sorted
in a descending order. Thus the first score corresponds
to the best candidate; the second score corresponds to
the second best candidate, and so on. Then STone will
be distributed to each tonal syllable in proportion to its
recognition score.

As shown in Table 11, the performance of the
LVCSR system improved from 80.90% to 84.62%
when tone information was incorporated via the pro-
posed method. Furthermore, the effect of the reliabil-
ity of tonal contours on tone recognition was studied.
Figure 7 shows the relationship between reliability and
tone recognition accuracy. The reliability information
was incorporated in the following way: if the relia-
bility was larger than a threshold θ (0.5 was selected
empirically for θ ), then some portion of the lower tone
recognition score was moved to its immediately pre-
ceding better one according to the ratio, (RF0 −θ )/C2,
where C2 was a constant (12 was selected empirically
for C2), and RF0 was the reliability estimation of the F0

contour. Otherwise, some portion of the higher score
was moved to its immediately following one accord-
ing to the ratio, as much as (θ − RF0)/C2, and we
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Figure 6. Base syllable lattice expansion with tone information.

should keep the same order (the originally higher score
was still higher after the adjustment). Finally, an ac-
curacy of 84.75% was obtained. Table 11 gives de-
tailed evaluation results for individual test speakers. For

Table 11. Performance of integrated system.

Character accuracy

Base syllable Without tone With tone Improvement With tone and Further
Speaker accuracy (%) (%) (%) (%) reliability info. (%) improvement (%)

01 (F) 75.81 83.12 86.16 3.04 86.84 0.68

02 (F) 83.66 85.50 88.80 3.30 89.00 0.10

03 (F) 73.52 79.97 80.73 0.76 80.92 0.19

04 (F) 78.00 79.98 85.50 5.52 85.50 0.00

05 (F) 82.33 76.88 83.85 6.97 83.96 0.11

06 (F) 77.78 78.13 83.33 5.20 83.65 0.32

07 (M) 83.86 80.23 83.28 3.05 83.28 0.00

08 (M) 84.00 84.59 87.38 2.79 87.38 0.00

09 (M) 76.89 79.53 82.84 3.31 82.74 −0.10

10 (M) 79.57 81.49 84.96 3.47 84.96 0.00

11 (M) 75.52 80.39 83.45 3.06 83.55 0.10

12 (M) 78.24 82.35 85.17 2.82 85.40 0.23

Overall 79.08 80.90 84.62 3.72 84.75 0.13

M: male; F: female

seven of the twelve speakers, the incorporation of re-
liability information led to further improvement in the
overall performance of the LVCSR system. Only one
speaker encountered performance degradation. This
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Table 12. Comparison with other systems.

Character accuracy

Base syllable Without tone With tone Improvement Relative error
accuracy (%) (%) (%) (%) rate reduction (%)

CUHK system (Lee et al., 2002b) 75.69 75.43 76.61 1.18 4.80

Our system 79.08 80.90 84.75 3.85 20.16
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Figure 7. Accuracy versus reliability.

confirmed that the hypothesis that RGPM is useful for
LVCSR.

4.2.4. Comparison with Other Systems. When the
tone information was incorporated into the Cantonese
LVCSR system by the proposed method, the recog-
nition performance improved from 80.9% to 84.75%.
Table 12 compares our system and the system reported
in Lee et al. (2002b). The proposed method signifi-
cantly improved the recognition performance.

5. Conclusions and Future Work

A new method for prosodic modeling called RGPM
has been presented, in which the reliability of prosodic
cues are first evaluated; the higher the reliability, the
more the prosodic cues contribute to the final decision.
This method produces 52.9% and 46.0% relative word
error rate reduction evaluated on digit string recogni-
tion tasks for Mandarin and Cantonese, respectively.

When applied to Cantonese LVCSR, RGPM was
shown to be effective. RGPM would be a promis-
ing prosody modeling method for large vocabulary

Chinese speech recognition, especially in noisy envi-
ronments where the prosodic information becomes less
reliable.
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Notes

1. The null Initial of /i/-start Finals is usually labeled as /j/, while
the null Initial of /u/-start Finals is usually labeled as /w/, so it
can be said there are 23 Initials in Mandarin.

2. In Mandarin, the Final / / is associated exclusively with Initials
/ts/, /ts‘/ and /s/, and / / is associated exclusively with Initials / /,
/ / and / /. In the Pinyin system, the above two Finals and the
Final /i/ are labeled with the same symbol ‘i’, so there are only
35 Finals in the Pinyin system of Mandarin.

3. The carryover effect is the coarticulation effect of the preceding
tone on the following tone, while the anticipatory effect is the
coarticulation effect of the following tone on the preceding tone.

4. During the period of fry voice, the F0 values are extremely low; the
pitch periods become very irregular; and some noise will appear.
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